Q & A with Dr Christina Magill




Q. Tēnā koe Christina. Congratulations on your recent appointment to co-leader of the Resilience Challenge Volcanoes programme. What does this new opportunity mean for you?

Kia ora! Thank you for the opportunity. I am excited to be working with an incredible group of volcano researchers within the RNC Volcanoes programme. It has been wonderful to engage with hazard and risk scientists across the Challenge and I look forward to the many future collaborative opportunities.

Q. How did you get into volcanic research? Have you always been fascinated with volcanoes and natural hazards?

I have always preferred to be outdoors and had my first volcanic eruption experience when skiing on Ruapehu during my last year of high school in 1995. After this, I did a science degree at Waikato and was drawn to both natural hazard science and computer modelling. Thanks to wonderful supervisors, I was able to combine these interests and completed MSc research (Waikato) modelling volcanic tsunami and then a PhD (Macquarie, Sydney) modelling volcanic risk.

Q. Can you tell us a bit about your research journey to this point?

Three years in Australia turned into 20, where I was lucky to work on many natural hazard risk problems. My research at Macquarie University had much cross-over with industry and I worked closely with insurers in Australia, Japan and New Zealand to build a number of natural hazard loss models. Two highlights of this time were developing loss models for the impacts from Japanese volcanoes and Australian hailstorms (Australia’s most costly hazard). During this time, I also taught Natural Hazard and Environmental Health subjects and worked closely with graduate students. I loved seeing students also become fascinated with these areas of research.

In early 2020, I returned to New Zealand and began working in the Risk and Engineering Team at GNS Science. It’s been a big change working on many different projects that have included volcanic impacts to infrastructure, consequences of a large Hikurangi subduction event, disaster preparedness of supply chain managers, and advancement of the RiskScape 2.0 platform.

Q. Your work for GNS Science sees you involved in assessing and modelling impacts from a range of natural hazards. What does this multihazard approach offer you as a researcher?

Time in Australia gave me the opportunity to work on many different hazards including those not so important here in NZ – hail, bushfire and tropical cyclone. While each natural hazard event is different, there are also many similarities (susceptibility of critical infrastructure, wellbeing impacts to vulnerable communities). Each event allows us to learn a little more and to put plans in place to reduce future impacts. Above all we need to expect and account for uncertainties.



Q. You have done a lot of work overseas, including in Japan, the Philippines and Peru. How does Aotearoa New Zealand’s disaster risk reduction decision-making compare with other nations you have worked in?

Although the hazards and characteristics of exposed populations are unique, common to each of these countries is a group of passionate local scientists and emergency practitioners. I have made close friends as well as building strong research collaborations. Each of the countries above has amazing landscapes and volcanoes that I look forward to visiting again as soon as we are able.

For a small country, Aotearoa has many individuals and agencies involved in disaster research.  I have really noticed the tight community and close interdisciplinary collaborations. Universities, CRIs, consultants, government agencies and councils all work closely together to achieve shared goals of reducing risk from natural hazards.

Q. What are your future research aspirations?

I want to find solutions to address the ‘big’ problems – how can we use risk assessment methodologies to reduce the impacts from future large events, including those exacerbated by climate change? In recent times we have seen several large cascading events, including the 2011 Great East Japan earthquake, tsunami and nuclear disaster. If a large volcanic or earthquake event occurred here, what would our unique impacts be? How can we increase our resilience and reduce potential losses? Addressing these problems involves large amounts of data and computing resources.  How are we placed in this space and how can new technologies such as AI help?

Impacts from disasters don’t stop at casualties or financial impacts. Public health and wellbeing impacts extend for long periods following an event and potentially put the most strain on communities. My ultimate goal is to work to quantify and reduce these much more complex disaster impacts.

Q. What do you like to do outside work?

Covid has provided the unexpected opportunity to explore Aotearoa again after a long time overseas and to spend more time with family. Sport also plays a big part in my life and after work I’m often at the gym lifting a heavy barbell.

I’m slowly working through a Master of Public Health looking at the respiratory health impacts of disasters, and enjoying working on something a little outside my everyday research interests.



Impact case study:
Partnership as the pathway to impact


September 2021

We rely on collaborations with our partners and stakeholders in order to achieve our mission, including Challenge parties, other NSCs and aligned research organisations, iwi and hapū, government agencies, and councils.

Growing Kai Under Increasing Dry was a collaboration between RNC, Deep South and Our Land & Water NSCs to develop a ‘rolling symposium’ on drought and the primary sector. The series of three webinars and an in-person symposium focused on how the primary sector can build resilience to increasingly frequent and severe drought. We used the webinars to share NSC research, while the symposium allowed wide-ranging stakeholder discussions, particularly in relation to policy development by central government. A summary report is close to completion, which identifies responsibilities of the relevant sectors, and next steps.


Delegates at our Growing Kai under Increasing Dry symposium at Te Papa. Photo copyright Mark Coote.

We received really positive feedback from key stakeholders, particularly on way they were able to access expertise from the NSCs through a ‘single front door’.

RNC is part of a collaborative project supporting the deployment of seismometers in schools around the motu, alongside Te Herenga Waka Victoria University of Wellington, Massey University, University of Canterbury, GNS Science, ECLIPSE, QuakeCoRE, and East Coast LAB. The project aims to increase knowledge about earthquakes, tsunami and protective behaviours, encourage interest in the role of science in understanding the environment, and show pathways to future education and careers.

Under Phase 1, we co-funded a research project in partnership with QuakeCoRE to develop Māori-centred seismic hazard education activities for kura. Led by Lucy Kaiser (GNS Science, Massey University’s Joint Centre for Disaster Research) the activities are designed to encourage tuākana-tēina mentorship and increase the knowledge and preparedness of tamariki in the Hawke’s Bay and Wellington regions. Lucy was awarded the GNS Science Early Career Researcher Award at the 2020 Science NZ Awards in recognition of this mahi.

The Alpine Fault earthquake preparedness and response planning programme AF8 is a cross-boundary organisation funded by six South Island CDEM groups, QuakeCoRE and EQC, with science support from RNC’s Rural programme.

In autumn 2021 the team rolled out the AF8 Roadshow, sharing science with local communities from Invercargill to Golden Bay. Over 11 weeks, scientists including our research leaders Assoc Prof Caroline Orchiston, Assoc Prof Liam Wotherspoon, and Prof Tom Wilson visited 16 schools and held 16 public science talks. The events attracted a total audience of approximately 3,000 people. The events sparked new conversations about what can be done to boost local earthquake resilience, and the team received plenty of positive feedback from the public. 

The RNC Volcano programme is deepening existing partnerships and building new relationships in Taranaki and the Central North Island. Programme co-leader Prof Jon Procter is the new Chair of the Taranaki Seismic and Volcano Advisory Group (TSVAG) and is working closely with GeoNet to improve the volcanic monitoring network for Taranaki maunga. TSVAG is a critically important group for the provision of volcano science advice for Taranaki. RNC researchers are constantly transferring new methods and models into practice in partnership with Taranaki stakeholders as evidenced by two hazard assessments supplied to the Department of Conservation.[1] [2] The team is also working closely with Taranaki CDEM staff on volcano crisis contingency planning and risk communication. In particular, researchers have supplied the CDEM group with data and hazard GIS layers to develop a series of public hazard maps and infographics.

Jon Procter also leads a project in our Whanake Te Kura i Tawhiti Nui programme, working with Ngāti Rangi to identify wai (waters) associated with Matua te Mana (Maunga Ruapehu). Through wānanga, researchers and mana whenua aim to share knowledge about volcanic waters and the mauri, wairua and life-supporting capacity of these features.

In December 2020 researchers took part in a hīkoi with Ngāti Rangi to observe their environmental and volcano monitoring programme. At that time Matua te Mana was in a period of heightened unrest. Iwi-led environmental monitoring based on traditional sites picked up the changes in the Crater Lake that GNS Science had also detected, indicating an eruption. The project seeks to develop a joint mātauranga Māori / science-based water-monitoring framework of indicators that relate to volcanic processes and changing behaviours for Matua te Mana.


[1] Mead, S., Procter, J., Bebbington, M., 2020: Volcanic hazards to Taranaki Crossing from Taranaki and Fanthams Peak. Commissioned by the Department of Conservation. Volcanic Risk Solutions, Massey University, 46 p. 


[2] Procter, J.N., Bebbington, M., Mead, S., 2018: Pouakai Crossing volcanic hazard assessment. A report commissioned by the Department of Conservation. Volcanic Risk Solutions, Massey University, 32 p.

This case study was submitted to the Ministry of Business, Innovation and Employment as part of our 2020-21 annual reporting. 

Improving volcanic ballistic projectile hazard assessments using UAVs and a pneumatic cannon


By Dr Rebecca Fitzgerald

April 2021


Volcanic ballistic projectiles (VBPs) are fragments of solid rock or molten lava ejected out of a volcano in explosive eruptions. They are one of the most common causes of deaths and injuries on volcanoes, as they can travel up to hundreds of metres a second, range up to tens of metres in diameter and land with very high temperatures (up to 1000°C). VBPs can also cause substantial damage and destruction of property and infrastructure. Despite this, VBP hazard, impact and risk research has trailed behind other volcanic hazards.

This means that hazard and risk managers are missing out on crucial information that would help them calculate risk to people on volcanoes.

We understand how VBPs travel, how far they travel, and their size, but little is understood of 1) how they are distributed within a ballistic field (are there more impacting in certain areas than other areas?); 2) the intensity of VBP hazard within the field (are there a lot impacting a small area, making it hard to escape being hit, or are there only a few impacting a large area?); and 3) how their distribution around the volcano changes over time (will they always impact the same area? Will a similar number be ejected in each eruption?). These questions affect the decisions hazard and risk managers make to keep people safe.

In addition, we know that an impact by a VBP can cause injury or death, yet this is not the only aspect that may cause injury. Impact ejecta are often produced when a VBP impacts the ground, either from interaction with debris (i.e. gravel, scoria) on the surface or from the VBP shattering. The ejecta can also increase the size of the area of hazard around a VBP and may have the ability to injure (Figure 1).


Figure 1: VBP hazard footprint size is influenced by many factors. In this example we can see how impact ejecta is produced from a less dense VBP impacting a hard surface, increasing the hazard footprint (in birds eye view on the right) compared to a denser VBP impacting the same surface and not fragmenting on impact (P= person, B= volcanic ballistic projectile, EA= ejecta apron).

It is critical for hazard and risk managers to know the potential size of the hazard footprint that a person could be affected by and the number of VBP that may be experienced in an area to calculate risk effectively. This became the topic of my PhD thesis at the University of Canterbury.

To investigate how the number and density of VBP impacts change over a VBP field, we used a drone to take images of the area and map the location of VBPs at Yasur Volcano, Vanuatu.


Figure 2: A map of Yasur volcano with craters outlined and locations of the trails, viewing locations and the car park. Either side of the map are two examples of 20 x 20 m squares used to map VBPs in different distances and directions on the volcano. A and C show the drone images pre mapping and B and D show the same images with all the VBP mapped in red dots. We can observe less VBPs in C/D at 500 m from the vent than at 300m from the vent in A/B.

Mapping revealed that the spatial density of VBPs, or number of VBPs in an area, varied across short distances, and decreased with distance from the crater (Figure 2). More VBPs were also observed on the south and south-east of the volcano than in other directions, indicating that eruptions were being preferentially directed in that direction.

The mapping results and video footage of eruptions taken while we conducted fieldwork suggests that eruption directionality changes over time, highlighting how dynamic the hazard is and the need for potential changes in eruption directionality to be considered in risk management decisions.


Figure 3: Pneumatic cannon at UC. A) Set-up. B) Frames from a video filmed at 1000fps of an experiment using a basalt block fired at 60m/s impacting basalt boulders and producing impact ejecta.

Pneumatic (compressed air) cannon experiments were used to investigate how impact ejecta can affect the hazard footprint from a single VBP (Figure 3). The amount of energy they travel with and how far they travel may change depending on the hardness of the surface the VBP impacts, the hardness of the VBP itself and how fast the VBP was travelling on impact with the ground. Therefore our testing included these factors. Findings showed that ejecta have the potential to cause injury or death but that this varied with the factors tested. This indicates a need to incorporate impact ejecta into hazard footprints as well as the VBP itself when calculating hazard intensity, vulnerability and risk to people from VBPs on volcanoes

Improving our current understanding of how VBPs are distributed in space and time, and how hazard intensity varies over the hazard footprint will vastly improve our ability to assess and manage VBP hazard and risk.


Volcano mapping using hyperspectral remote sensing


By Dr Gabor Kereszturi, Massey University



New Zealand is not short of composite volcanoes that can produce volcanic hazards from a range of eruption styles, pyroclastic density currents, rockfall and ballistics, lahars, and flank collapses, among others. Based on the geological record, Mt Ruapehu and Mt Tongariro have produced many of these impactful hazards in their pasts, including larger-scale flank instabilities leading to far-reaching debris avalanches.

Flank collapses and instability are linked with hydrothermal alteration. Hydrothermal alteration is due to the circulation of hot and acidic fluids making their ways to the surface within a volcano. On Mt Ruapehu, this is often manifested as a heat-up of the Crater Lake (Figure 1) however, the current and past extent of such hot fluid’s pathways are practically unknown. 


Figure 1: Thermal image of the Crater Lake in March 2020
Figure 2: Field photo of hydrothermally altered rocks

These fluids can change the primary physical and chemical characteristic (Figure 2), making it weaker and weaker over time. The mineralogical is spatially highly heterogenous, complicating our ability to quantify volcanic hazard around composite volcanoes.

Hydrothermal alteration forms new minerals that can absorb light at wavelength beyond visible light. Hyperspectral imaging is a versatile technology that measures upwelling radiation from the surface of the Earth at hundreds of narrow and overlapping spectral bands.

When a hyperspectral sensor is mounted on a low-flying aircraft, we can acquire a seamless image with detailed spectral information associated with every image pixel. This wealth of spectral information can help to constrain the extent and type of dominant alteration mineralogy at every pixel, allowing a fast way to quantify the spatial patterns and degree of hydrothermal alteration on the surface of volcanoes.

New alteration mineral maps have been produced for Mt Ruapehu with this exciting technology for the first time, highlighting areas of intense alteration in the geological past (e.g. in purple in Figure 3). Our understanding of the evolution of such highly altered areas can vastly improve our capability to implement numerical modelling to forecast initiation and run-out distance of resultant debris avalanches that can travel 20-40 km from the volcanoes.


Figure 3: Mineral map derived from hyperspectral imagery, showing the Upper Whangaehu valley

Hyperspectral scanning is, however, not limited to airborne, or satellite application. Still, it can be used in well-constrained laboratory condition, providing opportunities in the future to combine hyperspectral data with other datasets (e.g. engineering geology). This is a promising future research direction that can help better understanding hydrothermal alteration on volcanoes at a centimetre smaller scale, as opposed to the 1-10 meters resolutions of airborne and satellite hyperspectral images, respectively.

These new datasets can decipher how rock-mass behaves and change their mechanical properties with hydrothermal alteration, contributing to highlights areas of potential future failure zones on New Zealand’s most iconic volcanoes.


Dr Gabor Kereszturi was a recipient of a 2020 Rutherford Discovery Fellowship for his research on hyperspectral remote sensing of volcanoes. 

Impact case study:

Model and tools for decision-making


How did Resilience Challenge research have an impact in 2019-2020?


Central to our mission to accelerate natural hazard resilience is the development of new models and tools to quantify hazards and impacts in more realistic ways, providing better assessments of resilience options to decision-makers.

Development of new models is iterative, requiring repeated testing and validation, and their application usually comes at the end of an extensive period of development. RNC is driving meaningful enhancements and innovations in this area, building on work in Phase 1, the Natural Hazards Research Platform, and leveraging existing New Zealand tools such as RiskScape and MERIT.

Updated hazard map for Whakapapa skifield. Credit: GNS Science

Earlier this year, Volcano programme research was integrated into updated hazard posters  for Turoa and Whakapapa skifields, as part of a collaboration with the Department of Conservation. Researchers were also commissioned by Ruapehu Alpine Lifts to produce a technical report on potential lahar hazard in the Whakapapa ski area. A new lahar simulation model, calibrated to previous lahars, was used to estimate the lahar footprint and impact for a range of scenarios. Results of the report have been used to develop safety measures for the new Sky Waka gondola.



Dr Nicky McDonald and colleagues from ME Research produced economic modelling utilising the MERIT (Measuring the Economics of Resilient Infrastructure Tool) capability developed in Phase 1, to assess the economic consequences of fuel outage scenarios following the Auckland-Marsden Point fuel pipeline failure. MERIT was applied to five disruption scenarios, which were then evaluated with and without mitigation options to better understand the impact of disruption and potential value of mitigation actions for New Zealand. The report was prepared for MBIE and findings also contributed to the Board of Inquiry into the 2017 Auckland Fuel Supply Disruption.

As part of our Coastal Flooding project led by Prof Karin Bryan (University of Waikato) and Dr Scott Stephens (NIWA), Dr Shari Gallop and Masters student Akuhata Bailey-Winiata (Te Arawa, Ngāti Tūwharetoa) carried out a summer project to determine the proximity of coastal marae (located within 2km of the coast) to coastal and river waterbodies. They found that 93% of coastal marae are located in the North Island; over 45% of coastal marae are within 200 meters of the coastline; and approximately 70% of coastal marae are located below 20 meters elevation relative to mean sea level. Data will be used as a baseline for determining risk and vulnerability of coastal marae to coastal hazards and sea-level rise. Akuhata’s research was recognised by the New Zealand Coastal Society who awarded him with a Māori and Pacific Island Research Scholarship in July 2020. 

Our Built Environment programme has completed new hazard maps for Bay of Plenty marae (showing fault lines, flooding, geothermal, liquefaction, and tsunami zones) using data from Rotorua City Council and Environment Bay of Plenty. The maps were provided to Te Arawa Lakes Trust collaborators, and are intended to be used to catalyse conversations with marae regarding adaptation and preparedness planning.

Part of our Weather and Wildfire programme involves the modelling of credible ‘what-if’ scenarios. What if the path of ex-Tropical Cyclone Cook (which did much damage in eastern Bay of Plenty in 2017) had been further west and hit our biggest population centre, Auckland? Weather scenario modelling at such fine-grid resolutions is a first for New Zealand, and allows detailed impact modelling to be carried out for a variety of coincident weather, flood, and landslide hazards, building a credible worse-case impact scenario for Auckland and surrounding districts. The early modelling is highlighting the potential for extreme impacts in Auckland, and in other areas well away from Auckland such as the higher elevations of the Kaimai ranges.


New modelling shows what could have happened if ex-TC Cook has tracked over Auckland. Credit: Ian Boutle, 2020

The primary goal of our Earthquake-Tsunami programme is to generate synthetic earthquakes using computer models. Big earthquakes and tsunamis (thankfully) don’t happen very often. A downside of this infrequency is that limited information from past earthquakes makes the job of forecasting future earthquakes and tsunamis challenging. One way of getting over these limitations is to generate synthetic earthquakes over millions of years using computer programs.

The team, led by Dr Bill Fry and Prof Andy Nicol, now has a first iteration of a synthetic seismicity model for New Zealand that incorporates all of the faults used for the National Seismic Hazard Model. This is a successful proof of concept. Further, through extended international collaboration, they have produced basic ground motion predictions from this model. This is an exciting and important stepping-stone in a programme of work that aims to improve future earthquake, tsunami and landslide hazard models in New Zealand.


This case study was submitted to the Ministry of Business, Innovation and Employment as part of our 2019-2020 annual reporting. 


Impact case study:
Responsive science for national emergencies


Resilience to Nature’s Challenges (RNC) has a unique role among National Science Challenges, with obligations under the National Civil Defence Management Plan (2015) to enable coordination of post-event research activity. As we have demonstrated in 2019-20, we’re able to add significant value by linking and coordinating across the science system, and supporting the direct input of science into decision-making during natural hazard emergencies.

In December 2019, six days of heavy rain caused the Rangitata River to overtop its banks, causing extensive flooding of farmland and roads. The event had significant national consequences, cutting off State Highway 1 and disrupting the national electricity grid. Our Built Environment team collected empirical data alongside other agencies to better understand the impacts of such an event, and University of Auckland postgraduate students supervised by Assoc Prof Liam Wotherspoon are developing a case study database in collaboration with affected network owners. This will inform other RNC projects by adding to the wider database of case history evidence of infrastructure component performance.

In Southland in February 2020, a month’s rainfall in a single day washed out roads and bridges and caused flooding and landslides. Fiordland was hit hard, with hundreds of tourists trapped in Milford Sound and on tramping tracks. The Rural programme’s science leadership in the AF8 (Alpine Fault magnitude 8) programme contributed to the Fiordland Hazards Group planning for disruptive events over several years prior to the floods. The flooding response was enhanced by these existing relationships, and the response planning efforts already in place. The evacuation of Milford Sound was the largest ever conducted in New Zealand. The Rural programme is leading innovative research to understand tourist risk exposure using geospatial tools, which will continue to support emergency managers in effective response planning.  


Road damage in Fiordland. Credit: Milford Road Alliance

The tragic Whakaari eruption on December 9th was the start of an unexpectedly busy period for a number of RNC researchers who assisted with the eruption response, providing regular expert commentary in the media, supporting GeoNet with risk assessments and risk communication, working with local iwi, providing specialist advice to agencies such as NEMA, MOH and MPI, and coordinating the identification of science and research priorities.

COVID-19 has been a significant event for many of our programmes. We mobilised early to provide integrated advice to the Department of Prime Minister and Cabinet as part of their strategic recovery planning, compiling short summaries of lessons from past natural hazard events to identify a set of issues that could be anticipated in medium-and longer-term recovery planning. 

RNC programmes also mobilised to contribute to the COVID-19 research effort. Our Resilience in Practice co-leader Dr Nick Cradock-Henry and colleagues identified the convergence of winter/spring flood risk and COVID-19 economic impacts in rural communities as a driver for increased social inequities, providing targets for stimulus investment. This analysis has been applied to consideration of investment in enhanced flood protection schemes through the ‘Shovel-Ready’ government stimulus, supported by the DIA Community Resilience Programme. This modelling capability is now being drawn on by Te Punaha Matatini to integrate social and economic impact modelling into overall COVID-19 scenario modelling.

RNC researchers have been active contributors to the national dialogue about priorities for the COVID-19 recovery stimulus. In numerous opinion pieces and media appearances, Prof Iain White and Prof Ilan Noy advocated for transformative change that boosts our local and national resilience to future disruptive events including climate change.

The multiple dimensions of the pandemic and economic recession are also informing our natural hazard resilience research, in the areas of multi-hazard modelling, consideration of livelihoods, the political dimensions of risk, and adaptation to multiple stressors. Several RNC programmes have brought an additional COVID-19 dimension to their work through new funding from MBIE, the Health Research Council, and Te Punaha Matatini.

Our Phase 2 Rural programme, as designed, featured a strong focus on tourism and disasters. COVID-19 has now extinguished the international tourist market for the foreseeable future, rapidly shrunk a sector that was set to be a key partner in our research programme, and exposed its vulnerability to international events. Rural programme researchers Dr Joanna Fountain, Dr Caroline Orchiston and others have been part of an emerging dialogue about the need for a ‘reimagined’ tourism system that will lead to a more sustainable and resilient industry.

The agility demonstrated in these examples is possible because of the collaborative network of researchers committed to the RNC mission, and well-established relationships with research users and decision-makers.   

This case study was submitted to the Ministry of Business, Innovation and Employment as part of our 2019/20 annual reporting.