Home > Article > Earthquake early warning systems based on low-cost ground motion sensors: A systematic literature review

Article

Earthquake early warning systems based on low-cost ground motion sensors: A systematic literature review

Chandrakumar C, Prasanna R, Stephens M and Tan ML (2022) Earthquake early warning systems based on low-cost ground motion sensors: A systematic literature review. Front. Sens. 3:1020202. doi: 10.3389/fsens.2022.1020202

Abstract

Earthquake early warning system (EEWS) plays an important role in detecting ground shaking during an earthquake and alerting the public and authorities to take appropriate safety measures, reducing possible damages to lives and property. However, the cost of high-end ground motion sensors makes most earthquake-prone countries unable to afford an EEWS. Low-cost Microelectromechanical systems (MEMS)-based ground motion sensors are becoming a promising solution for constructing an affordable yet reliable and robust EEWS. This paper contributes to advancing Earthquake early warning (EEW) research by conducting a literature review investigating different methods and approaches to building a low-cost EEWS using MEMS-based sensors in different territories. The review of 59 articles found that low-cost MEMS-based EEWSs can become a feasible solution for generating reliable and accurate EEW, especially for developing countries and can serve as a support system for high-end EEWS in terms of increasing the density of the sensors. Also, this paper proposes a classification for EEWSs based on the warning type and the EEW algorithm adopted. Further, with the support of the proposed EEWS classification, it summarises the different approaches researchers attempted in developing an EEWS. Following that, this paper discusses the challenges and complexities in implementing and maintaining a low-cost MEMS-based EEWS and proposes future research areas to improve the performance of EEWSs mainly in 1) exploring node-level processing, 2) introducing multi-sensor support capability, and 3) adopting ground motion-based EEW algorithms for generating EEW.

Scroll to Top