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How do volcanologists
forecast eruptions?

Whitehead MG & Bebbington MS (2021)

Method selection in short-term eruption forecasting
Journal of Volcanology and Geothermal Research, 419, p.107386.

Whitehead MG, Bebbington MS, Procter JN, Irwin ME & GPD Viskovic (2022)
An initial assessment of short-term eruption forecasting options in New Zealand

New Zealand Journal of Geology and Geophysics, DOI1:10.1080/00288306.2022.2080236.
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e Prediction a definitive statement on future behaviour
' Ngaﬁkina )
Te Ao Turoa
Forecast an uncertain statement on future behaviour
Short-term hours to months
Probabilistic probability of an event incorporating uncertainties
Quantitative measurable, numeric

Mel Whitehead Volcano
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Can

0 volcanologists 0

redict
St eruptions?

“This volcano will
erupt next Thursday”
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Kia manawaroa -
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Te Ao Turoa

Can

0 volcanologists forecast eruptions?

“There might be an
ENORMOUS eruption
before lam 4 and a
half!”
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“Forecasting is a central goal of volcanology.” (p1)

“..in certain respects volcanoes are inherently unpredictable.
As in other dynamical systems, very slight changes in initial
conditions or slight changes in controlling parameters might
have completely different long-term outcomes.” (p12)

Sparks RSJ (2003) Forecasting volcanic eruptions. Earth and Planetary Science Letters, 210(1-2), 1-15.
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“Despite much progress over the last century, however,

volcanoes still erupt with no detected precursors, lives and
livelihoods are lost to eruptive activity, and forecasting the
onsets of eruptions remains fraught with uncertainty.” (p1)

“It may never be possible to forecast every eruption on a time
scale and with a degree of confidence that is useful to society,
but we believe that great progress is on the horizon.” (p24)

Poland MP & Anderson KR (2020) Partly cloudy with a chance of lava flows: Forecasting volcanic eruptions in the twenty-first century.
Journal of Geophysical Research: Solid Earth, 125(1).
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“This inherent complexity [of volcanoes] and the large uncertainty in the
knowledge of these processes lead to the practical impossibility of
predicting deterministically, or even with a small uncertainty, the onset
time, location, and size of the impending eruption.” (p1777)

“Uncertainties cannot be completely eliminated....but they can be
reduced significantly through the development of more reliable and
skilled forecasting models.” (p1800)

Marzocchi W & Bebbington MS (2012) Probabilistic eruption forecasting at short and long time scales.
Bulletin of volcanology, 74(8), 1777-1805.
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Aow<d0 volca nologists'forecast eruptions?

Maybe?
Sometimes?

Not yet?
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S Question: Knowledge & Data:

Nga Akina o
Te Ao Turoa

General
Scientific principles
Global volcano database
Published literature
Monitoring database

When and how will
this volcano erupt?

at does this mean
about the future) Volcano-specific

Eruption history
Published literature

Monitoring data
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Challenges

RESILIENCE
TO NATURE’S

CHALLENGES

e Question: Knowledge & Data:
e
General
] Scientific principles
When and how will FORECASTING Global volcano database
thiS volca no eru pt? METHODS Published literature

Monitoring database

Volcano-specific
Eruption history
Published literature
Monitoring data

Assumption 1 - Previous behaviour informs future behaviour
Assumption 2 - Data that can be observed are related to the question we are trying to answer
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Kia manawaroa -
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Te Ao TOroa

Eruption Parameters:

Eruption start time

Eruptive vent location(s)

Eruption Parameters

When and how will this volcano erupt?

A Poisi
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Eruption Parameters:

Eruption start time
Eruptive vent location(s)
Eruption size

Eruption Parameters

When and how will this volcano erupt?

A .
) 1
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Challenges
RESILIENCE. When and how will this volcano erupt? | w et sampes
CHALLENGES ca[ ]
23| o
Kia manawaroa — = 0.0001 km? ' gﬂ?tléft;’gtll"l;é%ris
Nga Akina o E 1
Te Ao Throa o 0.001 km? - E‘tountgt H?I?ng
@ 5 ecemper /,
é = 0.01 km? ° Mount St Helens
g 3 June 12,1980
v L 0.1 km? Merapi, Indonesia
g‘ 4 2010
Eruption Parameters: I
v |5
Eruption start time o,
Eruptive vent location(s) o
Eruption size EF.FUSI\_/E EXPLOSIVE
- . Lava fountains, Kilauea 1959 Ash plume, Sinabung 2013
Initial eruption style

Images: https://volcano.si.edu/ (GVP)

Newhall CG & Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for
historical volcanism. Journal of Geophysical Research: Oceans, 87(C2), 1231-1238. Newhall & Self (1982)
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Kia manawaroa —

Nga Akina o

Te Ao TOroa

Eruption Parameters:

Eruption start time
Eruptive vent location(s)
Eruption size

Initial eruption style
Eruption phase duration

Eruption Parameters

When and how will this volcano erupt?
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Eruption Parameters:

Eruption start time
Eruptive vent location(s)
Eruption size

Initial eruption style
Eruption phase duration
Phase specific hazards

Eruption Parameters

When and how will this volcano erupt?

Mayon, 1984 [P. Pena/PIVS]

Pinatubo, 1991 [C. Newhall/USGS]

3

Tsunamis
)

Hunga Tonga-Hunga Ha’api, 2022
[NOAA GOES West]

Pinatu

e Stars arsd S
! Mit. Pinatubo showers Clark

bo, 191 [V. Gempls/ljéAF]
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RESILIENCE Eruption Parameters:
TO NATURE’S

CHALLENGES
“Noarinas Eruptive vent location(s) k o 2
HE S Eruption size + O 208 —»
Initial eruption style -

Eruption phase duration
Phase specific hazards

Monitoring data Expert(s) Forecast

Requirements:

Expert personnel
Forecasting algorithm
Y& General monitoring equipment

Y% Previous monitoring data
% Previous eruption data
Previous expert elicitation

LIMITATIONS

Experts are subjective

High stress and time-constraints during volcanic unrest

Assumption 1 - Previous behaviour informs future behaviour
Assumption 2 - Data that can be observed are related to the question we are trying to answer

Assumption 3 - The expert (or group of experts) can produce an accurate eruption forecast
Assumption 4 - The method/expert performs as expected
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SCieNCE (2) Event tree

Challenges
RESILIENCE Eruption Parameters: VEI3
TO NATURE’S
CHALLENGES Tephra fall
Eruption start time
e Eruptive vent location(s)
Te Ao Tdroa . . Lahar
Eruption size
Initial eruption style
Lava flow

Eruption phase duration

Magmatic
intrusion

Phase specific hazards

Pyroclastic flow

No eruption

Requirements:

Expert personnel
Forecasting algorithm
% General monitoring equipment

Previous monitoring data
% Previous eruption data
Previous expert elicitation

Assumption 1 — Previous behaviour informs future behaviour

Assumption 2 — Data that can be observed are related to the question we are trying to answer
Assumption 3 - The conceptual model is correct and includes all potential out-comes

Assumption 4 - The underlying process producing the data exhibits time homogeneity on longer scales
Assumption 5 - The method / expert performs as expected

Assumption 6 - Assignment of base rate and/or conditional probabilities are correct

Assumption 7 - Assignment of threshold values or conditions or classifications are correct

LIMITATIONS
No eruption start time

Experts are subjective




Events Distance

N a ti O n a | Eruption Level of Activity VEI {not mutually exclusive) {not mutually exclusive)
M Ash
SCICNCE (2) Event Tree

Challenges gt . .
velts o Lorgeuncersins An event tree used during the Agung eruption for
Escalates = - the look-forward period of two weeks from:

20% ELE3
RESILIENCE Lahar ta N, SE, SW
TO NATURE'S 20% Largeuncerainy 23 Jan — 6 Feb 2018.
CHALLENGES ) 755
Ballistics
EER]
Kia manawaroa — m
MNga Akina o T00%
[ Ta Lava Past 7.5 km to
Te Ao Tdroa Vel m =75
T0% Large uncertainty
PDC 0%
20%
' Past 12 km
Fir ta N, SE, SW
Large uncertainty
e 503
Ballistics

Eruptio Ash
EEES
oo

100% | ey . ST
VEI 2 res unceTEny
15% K PDC ?596
% e =
Large uncertsinty
7
patistics
ontinues VEI 0-1 TS
— om sk Lorge uncersingy Syahbana DK et al. (2019) The 2017-19 activity at Mount Agung
70% 100% m o in Bali (Indonesia): Intense unrest, monitoring, crisis response,
T e evacuation, and eruption. Scientific reports, 9(1), 1-17.
Stops Bji}:cs =

0% Images: https://volcano.si.edu/ (GVP)

10% =
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SCICNCE (3) Belief Network
o Eruption start time

Challenges
Effusive
Eruption
Nga Akina o Eruptive vent location(s)
teAnting Eruption size
Initial eruption style
Degassing

Eruption phase duration
Phase specific hazards

RESILIENCE Eruption Parameters:
TO NATURE'S
CHALLENGES

Explosive

eruption
Closed
conduit
Magmatic
intrusion

COpen
conduit

O Latentnode

O Observablenode =—p Beliefnetwork arc

Assumption 1 — Previous behaviour informs future behaviour

Assumption 2 — Data that can be observed are related to the question we are trying to answer
Assumption 3 - The conceptual model is correct and includes all potential out-comes

Assumption 4 - The underlying process producing the data exhibits time homogeneity on longer scales
Assumption 5 - The method / expert performs as expected

Assumption 6 - Assignment of base rate and/or conditional probabilities are correct

Assumption 7 - Assignment of threshold values or conditions or classifications are correct

Requirements:

Expert personnel
Forecasting algorithm
General monitoring equipment

¥ Previous monitoring data
% Previous eruption data
Previous expert elicitation

LIMITATIONS
No eruption start time

Training requires previous eruption
and monitoring data

Experts are subjective
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Bayesian belief network for La Soufriere.
Created with hindsight for the 1975-1977 eruption,
i.e., not used in real-time.

@»

RESILIENCE
TO NATURE'S
CHALLENGES

</

Perturbation of
hydrothermal system

Magma (
ascending ‘ due to magma

Perturbation of
hydrothermal system
due to magma
at depth

ascent

Magma
intrusion

Hincks TK et al. (2014) Retrospective analysis of uncertain eruption precursors at La Soufriere volcano, Guadeloupe,
1975-77: volcanic hazard assessment using a Bayesian Belief Network approach. J. of Applied Volcanology, 3(1).

Deep source ground
deformation

BN arc

|

Images: https://volcano.si.edu/ (GVP)
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RESILIENCE Eruption Parameters: Forecast, t, Requirements:
TO NATURE’S
CHALLENGES

-

Expert personnel
Forecasting algorithm
General monitoring equipment

Eruption start time
KiaHr;;rg‘:‘:;? . Eruptive vent location(s)
1eABRIN Eruption size
Initial eruption style
Eruption phase duration
Phase specific hazards

Previous monitoring data
Previous eruption data
Previous expert elicitation

Currentrate, fln

Rate{e.g. VT eventsperday)

LIMITATIONS
] h
time Currenttime, £,
ONLY eruption start time
Assumption 1 — Previous behaviour informs future behaviour
Assumption 2 — Data that can be observed are related to the question we are trying to answer Must observe accelerating signal
Assumption 3 - The eruption is preceded by any accelerating phenomenon
Assumption 4 - Data provides sufficient information to forecast required eruption parameters Left-truncating data is subjective
Assumption 5 - The method/expert performs as expected

Assumption 6 - Assignment of threshold values, parameters, conditions, or classifications are correct (alpha)
Assumption 7 - Data truncation point is correct (after which time all data are used to fit the failure forecasting equation)
Assumption 8 - Curve-fitting equation is correct
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Challenges (4) Failure Forecasting
Hindcasting of two explosions at Villarrica, Chile in 2000,
RESILIENCE . .
TO NATURE'S produced after the fact. Explosions detected on GOES images.
Used the inverse of the amplitude of the seismic signal:
Kia manawarea - 1/normalized(RSAM)

MNga Akina o
Te Ao TOroa

| i

18t Oct 2000 — no observed activity

Arbitrary units
[T

| |
22 Oct 27 Oct 1 Nov 5 Nov 11 Nov

Ortiz R et al. (2003) Villarrica volcano (Chile): characteristics of the volcanic tremor
and forecasting of small explosions by means of a material failure method. Journal of
Volcanology and Geothermal Research, 128(1-3), 247-259.

24t Oct 2000 - significant heating

Images: https://volcano.si.edu/ (GVP)
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Kia manawaroa —
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Te Ao TOroa

Eruption Parameters:

Eruption start time
Eruptive vent location(s)
Eruption size

Initial eruption style
Eruption phase duration
Phase specific hazards

(5) Process/Source models

(seismic example)

_“\__ Magma moving at depth

H Magma intrusion into storage region

%\._ Magma moving to surface

—-u.w—-u.ﬂ'— Magma close to surface

Assumption 1 — Previous behaviour informs future behaviour

Assumption 2 — Data that can be observed are related to the question we are trying to answer
Assumption 3 - The conceptual model is correct and includes all potential outcomes

Assumption 4 - Data provides sufficient information to forecast required eruption parameters
Assumption 5 - The method/expert performs as expected

Assumption 6 - Assignment of threshold values, parameters, conditions, or classifications are correct

Requirements:

Expert personnel
Forecasting algorithm
General monitoring equipment

Y Previous monitoring data
% Previous eruption data
Previous expert elicitation

LIMITATIONS

Still mainly conceptual stage
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McCausland WA et al. (2019) Using a process-based model of pre-eruptive seismic
patterns to forecast evolving eruptive styles at Sinabung Volcano, Indonesia. Journal

of Volcanology and Geothermal Research, 382, 253-266.

Images: https://volcano.si.edu/ (GVP)

(5) Process/Source models

CONCEPTUAL but has been used to inform other
forecasting models (e.g., Event Trees, Sinabung, 2013)

° Final ascent of magma to surface

Magma moving upwards from
upper magma storage to surface

Magma intruding into an
upper magma storage region

Magma rising from a lower
crustal storage region
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Challenges

Eruption Eruption Eruption

RESILIENCE Eruption Parameters:
TO NATURE'S
CHALLENGES

Requirements:

Expert personnel
Forecasting algorithm
General monitoring equipment

Eruption start time
xiag;fgi‘:‘:;? . Eruptive vent location(s)
1eABRIN Eruption size
Initial eruption style
Eruption phase duration
Phase specific hazards

Previous monitoring data
Previous eruption data
Previous expert elicitation

O Output (Eruption)
O Hidden (Latent) LIMITATIONS

Need enough training data

( } Input {Observable) i )
(recommendation is > 50 per class*)

Assumption 1 — Previous behaviour informs future behaviour

Assumption 2 — Data that can be observed are related to the question we are trying to answer *”in order to train supervised models.....20 labeled events
Assumption 3 - The underlying process producing the data exhibits time homogeneity on longer scales  per class is a good starting point, but a minimum of 50
Assumption 4 - Data provides sufficient information to forecast required eruption parameters labeled events per class is recommended.”

Assumption 5 - Sufficient data are available to train and test the model (Carneil & Guzman, 2020, Machine Learning in Volcanology)
Assumption 6 - There is sufficient variation within the data to cover most outcomes

Assumption 7 - The method/expert performs as expected Malfante et al. (2018) — 800 events per class, and ran the

Assumption 8 - Assignment of threshold values, parameters, conditions, or classifications are correct whole thing 50 times to get statistically stable results
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(6) Machine Learning

4
File Edit Format View Help
look_forward=2., data_streams=data_streams, root="test’)

# set the available CPUs higher or lower as appropriate
n_jobs = 4

# train the model

drop_features = ['linear_trend_timewise’,'agg_linear_ trend']

fm.train(ti="2012-84-081", tf='20812-89-3@', drop_features=drop_features, retrain=True,
n_jobs=n_jobs)

# plot a forecast for a futum
te = '2013-088-19° #fm.data.te
fm.hires_forecast(ti=te-fm.dt

save=r'{:s}/forecast_Aug2

R

| eruptive_periods - Notepad — [ ey

de

5

forecast_now():
*"* forecast model for presen

File Edit Format View Help
2812 88 84 16 52 86
2813 88 19 22 23 86
2813 18 83 12 35 86
2816 a4 27 89 37 8
2819 12 89 81 11 e

# constants
month = timedelta(days=365.25
day = timedelta(days=1)

hour period, writing data to temporary file.

# pull the latest data from G
td = TremorData()
td.update()

downlead pericd is offset from initial

# model from 2011 to present

data_streams = ["rsam’, 'mf’,"’

fm = ForecastModel(ti="2011-8
look_forward=2, data_stre

bad period.

# set the available CPUs highi
n_jobs = 4

# The online forecaster is tr Ervice-nrt.geonet.org.nz’)

# needs to be trained once, o
# (Hint: feature matrices can
# providing they have the sam
# to *root*_features.csv)
drop_features = ['linear_tren
fm.train(ti="2011-81-81", tf=

retrain=False, n_jobs=n_ig

8,16]]

# forecast the last 7 days at ttime=t@+i*daysec, endtime=t@ + (i+l)*daysec, station=
fm.hires_forecast(ti=fm.data.

save='current_forecast.pn

Ln1, C 100%  Windows (CRLF) UTF-8

if __name__ == "__main__":
#forecast_dec2819() Y, 'WIZ®, "1e", “HHZ", t@+i*daysec, t@ + (i+1)*daysec)
forecast_test() o
#forecast_now() < Con T o o o : SRS s
Ln 1630, Col 21 100%  Windows (CRLF) UTF-8

All code from: https://github.com/ddempsey/whakaari

Dempsey DE, Cronin SJ, Mei S, Kempa-Liehr AW (2020) Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at

Whakaari, New Zealand. Nature communications. 11(1):1-8.
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How do volcanologists forecast eruptions?

Eruption Parameters:

Eruption start time
Eruptive vent location(s)
Eruption size

Initial eruption style
Eruption phase duration
Phase specific hazards

What do we need to
know for this volcano? ——

Requirements:

Expert personnel
Forecasting algorithm
General monitoring equipment

Previous monitoring data
Previous eruption data

What forecastin
5 Previous expert elicitation

methods are feasible?

What requirements are

/ met at this volcano?
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Kia manawaroa -
Nga Akina o
Te Ao Tlroa

What forecasting
methods are feasible?

7

What do we need to What requirements are
know for this volcano? «—___ / met at this volcano?

i <2
Kaikohe " Raoul
A
Tahua
(A
aeeand 4  Whakaari
A
Rotorua
A
Taupo Okataina
Taranaki s :
2 A Tongariro
Ngauruhoe
Ruapehu
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Kia manawaroa —
Nga Akina o
Te Ao TOroa

GNSS station

B Broadband seis.

El Short Period Borehole seis.
Short Period seis.
AVF vents

Area used: “Auckland Region”

Expert elicitation already completed for Bayesian Event Tree
(Lindsay et al. 2010 -> Wild et al. 2022)

Failure forecasting method difficult at a distributed volcanic system

Insufficient data to train a
belief network or machine
learning algorithms

Belief Networks
Belief Networks with
training

Expert Interpretation
Event Trees

Eruption onset time

Failure Forecasting
Machine Learning

Process/Source based

Eruption size

Eruption style/type

Eruption duration

Eruption specific hazards

Location specific parameters

Negligible effort/time Medium effort/time
Some effort/time

Significant effort/time
Not currently feasible
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Kia manawaroa —
Nga Akina o
Te Ao TOroa

10 © GNSS station

’ Temperature
<> Lake height
6 W Broadband seis.
7 [ ] short Period seis.

'._-""'léw-'-'z ;0)<m J
T |

@ GNSS station

. Temperature
<> Lake height
B Broadband seis. 7
[] short Period seis. ,»'.

_29 km from volcano

(7 . 5

~ _ -7 Ngauruhoe Ll A

.+ Ruapehu el Py

o o7

'. '..“ ) b 2

.5 Ngauruho "

. 1 g e”
L a .

i ¥ @ np

(&) { /’
7
Taupo

Area used: < 20 km from crater lake

relative ease of application of FFM.

from paper seismograms.

Sufficient seismic stations (> 6 broadband) suggests

Several eruption-monitoring pairs available for belief
network training. Data to train machine learning
algorithms are available but must first be vectorised

Machine Learning

g . |5 | 2| %
Sl g | €15 | B 2
e [7s] 2]
5 5 S | € | § 8
s | & | £ |88 8| &
g | 2| 2z |88 8| 3
=i = 0 'm s 175}
— (5] 4 = =
+ > Y 2 & A
) = 5 | B = 0
& m | S B 3
> L [ 8
= aa) ~
7 Eruption size
2. Eruption style/type
Eruption duration
' Eruption specific hazards
| Location specific parameters
GRS
(i B - . ; :
j‘ F Negligible effort/time Medium effort/time
B T, Some effort/time

Significant effort/time
Not currently feasible
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Challenges

Area used: On island

Data to train machine learning algorithms are available but must first be
vectorised from paper seismograms

RESILIENCE
TO NATURE'S
CHALLENGES

_ Several eruption-monitoring pairs available for belief network training
Kia manawaroa -
Nga Akina o
Te Ao Toroa

Expert elicitation exists for belief networks (Christophersen et al. 2018)
and potentially allowing easier application of event trees

Machine-learning algorithm already constructed for eruption onset &
currently being tested
(Dempsey et al. 2020)

HJ: S02-flux-a

2| © GNSS station
2| B Broadband seis.

training

WSRZI10-HHZRT ! _White Island Summit
24

22

Belief Networks

Belief Networks with
Failure Forecasting
Process/Source based
Machine Learning

Expert Interpretation
Event Trees

-
@

This selsmograph I8 not operating correctly and I8 awalting maintenance

Eruption onset time
Eruption size

Eruption style/type

Eruption duration

Eruption specific hazards
Location specific parameters

) Winutes before current timestamp o o Negligible effort/time Medium effort/time  EI<UiilERIRNiiIavAE
Seismogram, May 2022: https://www.geonet.org.nz/volcano/monitoring/whiteisland Some effort/time Not currently feasible

]

-
B

a

Hours before current imestamp

N s @ @

w
al



Auckland

v
u
o

=

Ewven
Belief Networks

Expert Interpretation
Belief Networks with

Eruption onset time
Eruption size

Eruption style/type
Eruption duration
Eruption specific hazards

Location specific parameters

Belief Networks with

-}
2 @
=] w -}
A
. E’ = g

Okataina | 2| 5| ¢
Bl S| 3
g -]
—

Eruption onset time

Eruption size

_Eruption style/type

Eruption duration

Eruption specific hazards

Location specific parameters

training

Failure Forecasting

Failure Forecasting

Process/Source based
Machine Learning
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Example: Ngauruhoe, 1970s
Pa u/ I(isko vic (GNS)

péc NGAURUHOE 7777 )\
Date on 22/ 1908 -

Date off ‘.,-(_r}ff.l g0 29

Large volcanic earthquake

'Drumbeat’ volcanic earthquakes,
many of which will be repeating
sources.
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How do volcanologists forecast eruptions?

(3) Belief Network

(1) Expert Interpretation (2) Event Tree

WEI3

fﬁk S L

Monitoringdata Expert(s)

Fi t

6 bl = — = i

* e( L TC D 1

m@ A, o curve fitting parameters H %\—— Magma movingat depth

% Magma intrusion into storage region

1
1
1
1
1
1
]
1
1
: Magma movingto surface
1
Q, 1
1
1
1
1

—m.m——thL— Magma close to surface

Ratefe.g., VT eventsperday)

Currentrate, ',
M O Qutput (Eruption)
H i O Hidden (Latent)
ime Curremn ittime, &, o
Input(Cbservable)

Responsibly develop as many methods as possible for each volcano to better
characterize epistemic uncertainty and to cover all required eruption parameters

Disclaimer: The results here are based on practical implementation requirements with no implied assumption that those methods that are
easiest to apply will provide the most accurate estimates. This work has addressed the matter of method feasibility; however, questions
remain about which methods are most accurate and which are more likely to be trusted.

Y National
3 SCieNCE

Challenges




: National
RESILIENCE i Kiamanawaroa
TO NATURE’S : —Nga Akinao SC i e N C E

Challenges

For discussion

CHALLENGES : TeAoTaroa

e Forecasting parameters

What forecasting parameters may be most valuable and in what situations
Is eruption start time more useful than the explosivity of eruption?

e Warning time

Is a forecast of an eruption in the next day more useful than a forecast of an eruption sometime in the next
two weeks?

e Uncertainty

Do we expect volcanic eruptions to be forecast to the same degree as weather?
How comfortable are we with what degree of uncertainty around volcanic eruptions?
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Data to train machine learning algorithms are available
but must first be vectorised from paper seismograms.
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Failure forecasting method difficult to apply where there
are limited sensor-suitable locations (such as Lake Taupo)
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Note — an event tree is under construction for Taupo
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