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1)Why virtual earthquakes?
2)Virtual earthquake generation
3)Earthquake and fault interactions
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The Earthquake Information Problem
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Seismic hazard information is
typically derived from historical
and prehistorical earthquakes.

The NZ historical earthquake
record of ~180 yrs is very short
by geological standards.

~20 historical earthquakes > M7

We only have good prehistoric
earthquake information for ~50 of
~900 known active faults (~5%).

200-300 prehistorical earthquake

NZ experienced 100,000-500,000
>M7 earthquakes in last 1 Myrs
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Solving the earthquake information

problem

Develop physics-based models of virtual earthquakes
enabling new avenues of research to assess and forecast a
range of earthquake-related hazards.

Kaikoura Earthquake fault rupture{photo Kate Pedley)




What is an Earthquake Simulator?

Physics-based computer model that
approximates earthquake
processes.
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Uses information from known faults
(e.g., location, size, slip rate).

Assign model rock and fault
properties.

Model stresses faults and tracks
resulting earthquakes.

Model can be used for 100s of
faults and millions of years.

NZ model uses RSQSim software
(Richards-Dinger & Dieterich, 2012).
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New Zealand Virtual Earthquake Model

* RSQSIim model color: 10g10 slip rate [mm/yr]
running for NZ | i 5
(Shaw et al.
preprint). -37°F 0.8

* Initial simulator 390|
model uses faults 0.4
from Stirling et al. AL loo
(2012). 43°] '

* New Zealand fault -0.4
model revised and -45°F
updated (new 479l i
model includes ~1.2
>900 faults — 70% -49° -
increase from . —-1.6
previous model). 1160° +164° +168° +172° +176° 180° -176°

Shaw et al. (preprint)
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Comparison observations and model

NZ Seismicity; Shallow<30km; 1940-2020 80 years (model)
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Shaw et al. (preprint)

Broad earthquake patterns from simulator show many similarities to historical earthquakes.

Na-[lon?.‘l RESILIENCE Kia manawaroa
SCICNCE BINNES &N Ao
Challenges

CHALLENGES . TeAo Tdroa




Kaikoura Earthquake — multiple faults
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Multi-fault
ruptures are
common in the
NZ historical
earthquake
record.
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Are they
common in our
virtual
earthquake
record?
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Multi-fault virtual earthquakes

Fault slip
Mag=8.36 event=1002623 7 13.5
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Earthquake triggering — Observations

Hamner Springs

| Altitude (m)
3745

Porters Pass — Aftershocks area
N ) N |

Modified from Berryman and Villamor (2004)

Some historical large magnitude earthquakes appear to have triggered large earthquakes.
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Earthquake triggering - Model
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Model shows some spatially stable earthquake activity National S
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Horizontal alignment of events consistent with triggering
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Earthquake triggering - Model

7=

Wellingte

M6.3
Time

Fault contours =
slip

EQ epicentre

8
=

135.4 days
M6.9
Shaw et al. (preprint) Time 0 days
Earthquake triggering common in the model.
Model can be interrogated to determine National

requirements for triggered events.
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Initial RSQSim earthquake simulator model has been developed
for NZ (Shaw et al. preprint).

Virtual earthquakes share many similarities with historical and
prehistorical earthquakes.

Stress interactions for virtual earthquakes produce multi-fault
ruptures and earthquake triggering.

Future work will examine what factors (e.g., stress conditions,
earthquake magnitude, fault geometries) lead to multi-fault
ruptures and triggered earthquakes.

'\"w, \
l I‘ i‘ﬁ" m @/’ NIWA UNIVERSITY VICTORIA
' EARTHQUAKE COMMISSION Tadhae kel 4 UNIVERSITY
UNIVERSITY OF KOMIHANA R O TA G O WFL
CANTERBURY LamOnt“DOheftY Earth Observatory Te Whare Wananga o Otagoe (B

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

COLUMBIA UNIVERSITY | EARTH INSTITUTE NEW ZEALAND




Dr Bill Fry, GNS Science

RNC2 synthetic catalogue
applications



Big Fish (Think Blue whale —27m)

* Next generation (physics-
based) seismic hazard model

* Local-source tsunami hazard RNC2
model

Next Generation

Earthquake Cycle
Hazard Models

Simulator

v

Medium Fish

(Think tohora — 18m)

e Testing early warning (EEW
and TEW)

Defines Problem
Tests Solutions

* Improving ground motion
estimates (e.g. topographic
amplification)

Next Generation
Event Science
Response

Response Tools

v

* Improving forecasting of co-

and post-seismic hazards (e.g. R-CET
effects on groundwater)



Let’s take a step back to understand
TEW

(Collaboration with C. Moore, D.

Arcas, J. Borrero and A. Howell)

Seismic solutions provide information about the
earthquake source. This information is not
sufficient to unambiguously define the tsunami
source.



Challenge: Seismic info
describes a non-unique
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Inversion of
DARTs

* Black: Input
model

* Green:
simplified
model from
homogeno
us seismic
source

. Red: _
inversion
results
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Now imagine repeating that exercise
10,000 times

* We can develop a statistical understanding of the
efficacy of our early warning systems

* We can use that understanding to improve through
network and algorithm adjustment



Now let’s look at applications in co-seismic
groundwater changes

(Collaboration with A. Howell,
P. Johnson and R. Westerhoff)



Change in water table depth: Event
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Change in water table depth:
Z00Om view

L3 Green = water

/ 3 closer to land
surface; possible
inundation hazards,
higher tendency
towards flooding?
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Brown: deeper to
water, dry wells,
reduced stream
base flow

44444
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Change in groundwater flux

Change in east-west flux (m3/s)  ._5 Change in north-south flux le—7
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Positive values indicate increased flow to west (or

reduced to east)

Positive values indicate increased flow to north
(or reduced to south)



Change in E-W flux (zoom view)
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Could effect:
e Contaminant arrival time
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pumping



Flow change: Hawke’s Bay
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Flow accumulation

Watershed delineation (threshold: 4.500e+03)
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River course
change —
Hawke’s Bay

Red: More stream accumulation
after deformation
Blue: Less stream accumulation
after deformation

Where adjacent, stream course
will tend to change from blue
areas to red areas, presenting a
possible hazard e.g. stress on
levees, undercutting of
infrastructure, increased flooding
hazards, etc.
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Initial accumulation map

River

course. o
Hawke’s
Bay
accumulation: 1625
red colours
indicate more
drainage to
that point (i.e., 179
streams);
purple/black
less
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Post-deformation accumulation map
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Kapiti Coast: Stream change
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Bonus materialll

8:28 AM NZDT

Kermadec Event 2

* One Cha”enging Kermadec Event 1

aspect of response 6:41 AM NZDT

V\:Cas the accumulation

(0) trapped energy in .

ast Cape Event

harbours because of oz:znmnzm

multiple events!

* How often does this
happen in the NEL ‘ZEALAND
catalogue and the
real world?

Friday 05 March 2021 - as of 09:35 AM NZDT
Magnitude 7 or greater earthquakes 300 ke



Ssummary

e Capturing the stochastic range of possible

earthquakes opens up huge potential for improving
resilience

* Watch this space for
* Next generation seismic and tsunami hazard
e Critical testing of early warning algorithms

e Better understanding of earthquake clustering and
multi-fault rupture

* Better models of co-seismic impacts including
* Tepographic amplification of ground motion and its impacts on
Thanksifkatijomsiag

* Models of changes to surface and groundwater



Initial accumulation map Post-deformation accumulation map
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Supplemental slide on w-phase at
short distances



Conclusions

* Purely from a monitoring
perspective, instrumental
cable would certainly help,
but it’s impacts aren’t
dramatic because of the
(stream parallel) geometry

* Co-located sm and pressure
sensors could probably help
with removing seismic
source contamination of
tsunami measurements,

=
. Q
subject to future work. e e St e R e At Rt S S e
;J::_:'F_ﬂ:i;f{ & s e e s e et Sikes s, e fee
T e == V_‘! CRERCE N e NG NN e e e JEe e e | e
g F RS :— _____________ If_ “““““ A P B T | e If_ _____ R ) PSR an Pty <Y ) DA
B o T e e e e g e U e e e i e e A e e o o e el A s
8- ...... e biromaetomens e R S R R T
7 1 1 1 I 1 1
0.0 2.0 4.0 6.0 8.0 10.0 12,0




,_\
(V]
—

60
50 PO SR T S T
g 40 . 2
g B0yt
5 20 :_ T o
10} e , b
- ot ALt ity .
45 50 55 60 65 7.0 75 80 85 90 95
(b) My-gomr

45 50 55 60 65 70 75 80 85 9.0 95
(c) Mw.gomt

8.5} : s
8.0 e
7.5F S

7.0F

Mw
@
N
N

6.5 .
6.0
55

5.0
9.

4.5 k2 -
45 50 55 60 65 7.0 75 80 85 9.0 95

My.comt

Figure 4, Comparison of W-phase and GCMT solutions obtained at
To + 7 min (A < 12°). (@) Comparison between W-phase and GCMT
focal mechanisms. @ is the angular difference between W-phase and
GCMT focal mechanisms (see equation (3)). (b) Magnitude difference
AM,, = M, — M,,_Gcmt between W-phase magnitude (M,,) and GCMT
magnitude (M, — ccm). (€) Comparison between W-phase (M,,) and
GCMT magnitude (My,_gemT)-

Left, the w-phase solution
magnitudes available
before 10 minutes
compares really well with
the global standard GCMT
(within +/- MwO0.2).

Right shows difference in
epicentral locations
between w-phase and
GCMT. Difference in
epicenter (top) and depth
(bottom)

Left and right plots based
on 12 degrees of data
(within 7 minutes). Table
on bottom right shows
what can be done with
only 5degrees of data!

Number of Events

Number of Events

(b)
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25
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Statistical Comparison of W-Phase and Global CMT Solutions Using Stations Within A < 5°and A < 12°

RMS (AM,,)

Table 2

Distance Event number (AM,,)
A5 106 0.02
A<12° 147 0.01

p (| AM,|<0.1) p(|AM,]=<0.2) (D) RMS (@) p (D <207
90% 100% 144° 16.9° 7%
92% 100% 13.0° 15.5° 85%

Note. The number of solutions obtained is indicated in each case (event number) along with the mean and RMS values of the magnitude difference
(AM,, = M, — M,,,_ccmt) and focal mechanism angular difference (). We also present the proportion (p) of solutions with AM,, < 0.1, AM,,, < 0.2, @ < 20°,

or ® < 30°

Zhao et al., 2017



