TE TAI WHAAAAA E Growing a stronger, more resilient Aotearoa. • Te Papa, Wellington 13 & 14 May 2024

RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Multihazard risk assessment

What are the new advances in understanding and modelling individual, cascading and coincident hazards, and how are they being applied to improve hazard risk management?

Speakers:

- Graham Leonard, GNS Science (Chair)
- Bill Fry, GNS Science
- Mark Dickson, University of Auckland
- Stuart Mead, Massey University
- Richard Turner, NIWA
- Christina Magill, GNS Science
- Juan Monge, ME Research
- Anthony Cole, Te Toi Ōhanga

National coastal change dataset for Aotearoa New Zealand

Resilience to Nature's Challenges: Coastal Programme

Mark Dickson, Murray Ford, Emma Ryan, Megan Tuck, and many others!

RESILIENCE TO NATURE'S CHALLENGES National SCIENCE Challenges

Ngā Ākina o

Te Ao Tūroa

Understanding the relationship between coastal change and sea-level rise is one of the biggest challenges in coastal science

Sea-level signal obscured by myriad factors

• Earthquakes

an and the states of the

- Sediment supply
- El Niño, La Niña
- Vegetation
- Wave climate
- Humans

We have national datasets for SLR, waves, surge etc, but historic coastal-change data are fragmented/incomplete

Mapping at local scale with national coverage

- >400 AOI's
- Mapped cliff top, storm ridge, edge of (dune) vegetation
- Max coastline positions (22)
- National average of 8 coastline positions for each area

Ohiwa_28FEB2023	Ohiwa_03FEB2020		Ohiwa_290CT2008	Ohiwa_120CT1945
Ohiwa_30OCT2022	Ohiwa_02OCT2018	Ohiwa_08APR2013	Ohiwa_23SEP1983	
Ohiwa_02JAN2022	Ohiwa_16APR2015	Ohiwa_16MAR2012	Ohiwa_10SEP1971	
Ohiwa_20DEC2021	Ohiwa_03DEC2014	Ohiwa_25MAR2010	Ohiwa_6MAR1965	

- Coastal change is complex and diverse, but there are patterns
- Baseline provided for projections, and untangling drivers

~100 m retreat (1967 to 2022) at Manutahi Wellsite

Significant acceleration in erosion rates post 1990

30 transects showing coastal change through time (m)

coastalchange.nz

data.coastalchange.nz

TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa Challenges

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Multi-hazard risk from physics-based earthquake simulators

Bill Fry (Co-Lead Andy Nicol) and Earthquake & Tsunami Programme Team

Wednesday 14 May, 2024 Te Papa

Earthquake simulators

8

6

- 2

Crustal slip (m)

Yield complex multi-fault events → interaction between faults more realistic than stochastic models

Finite fault models possibility of including rupture directivity → possibility for more realistic ground motion than stochastic models

Pathway for nonstationarity of seismicity → clustering and timedependent hazard

RESILIENCE

TO NATURE'S

CHALLENGES

Kia manawaroa

- Ngã Ákina o le Ao Túroa

National

Challenges

PNCE

60000.0

Liao et al., 2024

Kia manawaroa – Ngã Äkina o Te Ao Tūroa

RESILIENCE

CHALLENGES

NATURE'S

ence

Challenges

Tsunami Hazard

2500 year return hazard from local sources

Hughes et al., 2023

Multi-hazard advice framework

	1. Billing	L. Ford Walt	au automis and an automis South	Pet Interesting	nd subschaft	NA SANS (B)	nothing tout	S. Martin S. Martin	anonsiufsu	an www.sant	Sale Contract
	7.7 Mw	9.1 Mw	8.5 Mw	8.4 Mw	8.9 Mw	7.2 Mw	7.2 Mw	6.9 Mw	7.1 Mw	6.5 Mw	[
1MI)	MMI 7	MMI 9	MMI 9	MMI 9	MMI 9	MNI 5	MMI 7	MMI 5	MMI 6	NIMI 9	
	3 - high	4 - very high	4 - very high	4 - very high	4 - very high	3 - high	3 - high	3 - high	3 - high	4 - very high	
I	likely	highly likely	highly likely	highly likely	highly likely	unlikely	lkely	unlikely	unlikely	highly likely	
у	highly likely	highly likely	highly likely	highly likely	highly likely	likely	highly likely	likely	likely	likely	
	highly unlikely	highly likely	unlikely	unlikely	highly likely (-)	highly unlikely	highly unlikely	highly unlikely	highly unlikely	highly unlikely	

Expected ground shaking (MMI) Density of EIL Likelihood of severe shaking

Likelihood of severe shaking Likelihood of exceeding very high landslide density Likelihood of inundation

Multi-hazard modelling framework

Merging multi-peril, including geo-perils, extreme weather, climate change.... And impacts and risks from those perils.... Will, in the future (this decade), happen in an integrated system in which physics-informed simulations are queried through AI algorithms.

Synthetic seismicity presents the leading strategy to facilitate the incorporation of earthquakes and tsunamis into these models.

Thank you for your kind attention. b.fry@gns.cri.nz

Modelling volcano multi- and cascading hazards

Stuart Mead, RNC Volcanoes team, RNC Multihazard risk team

RNC Symposium 2024

Volcanic perspective of multihazards

Left: Ruapehu 1995 (GNS)

Right: Chaitén Town (USGS)

Impact is time-varying, across a massive input space:

 $\begin{array}{ll} P(\text{eruption}) \rightarrow P(\text{Size}) & \rightarrow P(\text{Lahar}) \rightarrow P(\text{lahar inputs}) \\ \rightarrow P(\text{style}) & \rightarrow P(\text{PDC}) \rightarrow P(\text{PDC inputs}) & \rightarrow P(\text{intensity}) \\ \rightarrow P(\text{duration}) \rightarrow P(\text{Ash}) & \rightarrow P(\text{Ash inputs}) \end{array} \begin{array}{l} \mathcal{A} t \\ \mathcal{A} t \end{array}$

Āhea riri ai ngā maunga puia? When will our volcanoes become angry?

Forecast eruption timelines

Providing continuous estimates of phenomena...

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa National SCIENCE Challenges

Volcanoes Programme

Define resulting hazard inputs

Simulate hazards

Define the spatial distribution of intensity

...but simulations are discrete!

National

SCIENCE

Challenges

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Volcanoes Programme

Simulating across the input space

Define the *functional* distribution of intensity using surrogates

Adversarial Networks (Deepfakes)

Gaussian Processes

10⁵ faster simulations, full input spaces!

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Volcanoes Programme

Delivery to stakeholders

Scenarios, hazard maps are a subset of the space

RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

National SCIENCE Challenges Inundation minimum flow volumes (m³) <= 10⁵ 10⁵ - 10⁶ 2.5 x 10⁶ - 5.0 x 10⁶ 5.0 x 10⁶ - 7.5 x 10⁶

> 7.5 x 10⁶

Volcanoes Programme

The future: Feedbacks in the climate

Weather-related hazards and impacts:

Multi-Hazard Risk Assessment

High resolution modelling of high-impact weather scenarios, and Auckland ex-tropical cyclone case study.

Richard Turner (NIWA) 14 May 2024 Te Tai Whanake Te Papa, Wellington

Thanks to all the project leads and researchers in the Te Huarere me te Ahi Pūkākā (Weather and Wildfire Theme) of RNC2

RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa What are the new advances in understanding and modelling individual, cascading and coincident hazards, & how are they being applied to improve hazard risk management?

- How do other resilience approaches sit alongside risk?
- How do intensive single peril approaches integrate as multi-hazard?
- How can we rapidly get ahead of supporting a surge in building and infrastructure constructure? In many large cases these are being 'fast-tracked'...
- How can all of this be applied to adaptation and retreat decision support for climate change (e.g. with MfE and local government) across hazards?

> RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa New advances.

Major Ex-tropical Cyclone

Dataset development: 35 (36) scenarios from 5 (6) historic storms.

- Most Scenarios 1.5 km, but several at 330 m, and some downscaling to ~few metres (CFD or wind-tunnel); Some scenarios with warmer (+2 C) seas for future climate indications.
- 330 m simulations and CFD/wind tunnel shown to add significant additional detail at the city scale. (e.g., Harbour bridge flow)
- New Zealand land mass itself has little influence on the storm track for ex-tropical cyclones. Encounters with land do weaken storm, but re-intensification possible when storm track goes over the sea again, e.g. Cook and Taranaki.
- Need many more scenarios more storms, more shifts, more on climate change impacts om TC to ex-TC transition, complementary with renanalyses (ERA-5, Barra, NZRA)

RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa -Ngā Ākina o Te Ao Tūroa

High Winds and Ex-tropical Cyclone

Muizz Shah – PhD (in progress) - building scale CFD simulations (interfaced with RiskScape to apply fragility functions and get detailed impacts) plus wind tunnel experiments over Auckland CBD.

RNC PhD researcher Muizz Shah – wind movement through buildings. Photo: Stuff

Coupling High-Resolution Numerical Weather Prediction and Computational Fluid Dynamics: Auckland Harbour Case Study

by 🕲 Amir Ali Salaei Piroce^{1,1} 🖓 🕲 Staart Meere ¹ 🖙 🗢 🚫 Richard Tarner ¹ 🖙 and 😵 Richard G. J. Fary ² 🕾

1 Meteorslogy and Remote Sensing, NKWA, Wellington 6021, New Zealand

² Department of Mechanical Engineering, University of Auckland, Auckland 1023, New Zealand

Author to whom correspondence should be addressed.

Academic Editor: Philip A. Rubini

And Rol 9831 1995 1995 Miles-Miles workin 1985/ana1109/087

Amir Pirooz and Stuart Moore completed simulations over high-wind event over Auckland Harbour Bridge.

BG Flood inundation – Cyprien Bosserelle (Pam shifted SW)

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Extreme Ex-tropical Cyclone

Landslide modelling – 24 hour rolling precip (from all scenarios) accumulations provided to landslide experts at GNS (Andrea Wolter) from the selection of storms

NIWA Taihoro Nukurangi

National **SCience** Challenges

Storm surge modelling – Zhonghou Xu - NIWA

RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

What are the new advances in understanding and modelling individual, cascading and coincident hazards, & how are they being applied to improve hazard risk management?

Climate Change

CFD

Inland Canterbury - Relative change in AEP speeds (2031-2070) vs (1985-2005)

To do:

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

RESILIENCE TO NATURE'S CHALLENGES

> Continue to analyse data collected and make use of datasets already created. More & finer downscaling climate change CMIP6 and impacts especially With respect to shifts in storm tracks and TC to ex-TC transition and to extend hires climatology backwards through integration with reanalysis datasets (ERA-5, Barra, NZRA).

So far, even the many different weather hazard impacts have been modelled in RiskScape as intensive single-perils. These need to be aggregated sensibly in determining total losses etc.

Risk modelling to inform land-use and emergency resource planning

Te Tai Whanake 14 May 2024

Who we are

New Zealanders are more resilient to natural hazards

Government is more informed on the possible impacts from natural hazards Deliver tools for partners and users evaluate natural hazard impacts

expert open source solutions

The RiskScape Journey

Platform

0

🖉 Reload Project 🛛 🌒 🔿 🔿

Microsite

Cyclone Gabrielle recovery – Select an adaptation layer

Define a policy option for adaptation layer

Multiple adaptation layers as policy options

Compare policy scenarios within microsite

Map view comparison

Orewa land-use planning – temporal changes in exposure (land parcels intensified per year)

Orewa land-use planning – temporal changes in hazard

RiskScape Extracts Sea Level Rise Data from NZSeaRise Website for a given SSP and confidence level

Orewa land-use planning – add coastal flooding

Orewa land-use planning – future risk with interventions

Identify High Risk Areas

Modify Land Use Planning 1) Avoid development in high risk areas 2) Retreat from high risk areas

Change in Risk With Interventions

Highly customisable spatial data processing for multi-hazard risk analysis

www.riskscape.org.nz

National	
SCIENCE	
Challenges)

RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

GRAPHICAL METHODS TO MAP HAZARD-TO-WELLBEING RISK

Juan Monge, Nicky McDonald and Garry McDonald RNC Symposium - TE TAI WHANAKE Te Papa, Wellington 2024

GROSS DOMESTIC PRODUCT (GDP)

- GDP used since WWII to measure growth and progress
- GDP leaves out many important aspects such as:

National

SCIENCE

Challenges

- Human wellbeing
- Planetary sustainability
- Distributional dimensions

Kia manawaroa

– Ngā Ākina o

Te Ao Tūroa

• Any other comprehensive alternative that includes all of the above?

Japan GDP: Natural disasters hit economic growth

14 November 2018

< Share

Japan's economy shrank in the third quarter as natural disasters hit spending and disrupted exports.

New Zealand falls into recession, as impact of cyclones takes toll

As the economy shrinks by 0.1% in the March quarter, officials say the impacts of cyclones Hale and Gabrielle worsened the economic outlook

RESILIENCE TO NATURE'S CHALLENGES

WELLBEING

- Wellbeing measures "the aspects that matter the most to people and that, together, shape their lives"
- Different versions in different countries
- Gap between concept and policy
- Common denominator
 - Measure connections and changes over time

National

SCIENCE

Challenges

- Trade-offs and synergies
- How about using graphs?

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

LITERATURE ON GRAPHICAL METHODS

Review

A review of graphical methods to map the natural hazard-to-wellbeing risk chain in a socio-ecological system^{*}

Juan J. Monge^{a,*}, Nicola McDonald^b, Garry W. McDonald^b

RESULTS

- Well-developed earthquakes, floods and volcanic hazards
- Hazards to vulnerabilities
 - Probabilistic graphs
- Direct and indirect impacts
 - Social networks
 - System Dynamics diagrams
- Few studies considering wellbeing
- Nascent independent literature on wellbeing

RESULTS

- Biophysical systems
 - Graphs based on probabilistic
 - Hazards \rightarrow direct impacts on infrastructure
- Social systems
 - Graphs based on wider socio-economic linkages and dynamically adaptive behaviours
 - Direct impacts \rightarrow indirect impacts

GRAPHS USED FOR WELLBEING

- Collins et al. (2014) used a causal loop diagrams
- Ceriani and Gigliarano (2020) used Bayesian networks

CONCLUSIONS AND NEXT STEPS

- Graphical methods used as engagement tools and exploratory models
- Nascent literature on the characterisation of wellbeing's multidimensionality using networks and SD diagrams

National

Scipnce

Challenges

Kia manawaroa

– Ngā Ākina o Te Ao Tūroa

RESILIENCE

CHALLENGES

- The possibilities to use common methods, or combinations of these, are numerous
- Graph-based, distilled simulation models that can be used by experts from different backgrounds

REFERENCES

- Marzocchi, W. and Bebbington, M.S., 2012. Probabilistic eruption forecasting at short and long time scales. *Bulletin of volcanology*, *74*, pp.1777-1805.
- Chopra, S.S. and Khanna, V., 2015. Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience. *Physica A: Statistical Mechanics and its Applications*, 436, pp.865-877.
- Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L. and Blöschl, G., 2015. Debates—Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. *Water Resources Research*, *51*(6), pp.4770-4781.
- Collins, R., Sakhrani, V., Selin, N., Alsaati, A. and Strzepek, K., 2014. Using inclusive wealth for policy evaluation: the case of infrastructure capital. UNUIHDP and UNEP. Inclusive Wealth Report, pp.179-200.
- Ceriani, L. and Gigliarano, C., 2020. Multidimensional well-being: A Bayesian networks approach. *Social indicators research*, *152*, pp.237-263.

National

Challenges

Kia manawaroa

– Ngā Ākina o

Te Ao Tūroa

RESILIENCE

TO NATURE'S CHALLENGES

Manu Kura mō Ngā Manu o te Whatu

RNC Symposium 2024

Introduction

- Ngā Manu o te Whatu
- Creative activities training
- Five full-time staff
- RMA/protection/MCD
- Well-being and cultural survival
- Marae/hapū based
- Indigenous transdisciplinarity

National

SCIENCE

Challenges

• Te Kaihautū

RESILIENCE

TO NATURE'S

CHALLENGES

Multihazard Risk Programme

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Project aim

 Explore our (Heretaunga) risk perceptions and their implications for well-being

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Background

- We whakapapa to Ngā Hapū o Heretaunga
- Our training activities focus on measuring progress towards Māori community well-being and cultural survival
- We are aware of numerous hazards

Kia manawaroa – Ngā Ākina o

Te Ao Tūroa

- But had never really stopped to think about how we perceive risk or how risk perception influences the decisions we make
- This project raised lots of questions. For example:
- Why are our (Māori community) perceptions of risk different from those of local businesses and government?
- Whose perceptions of risk should we follow?

National

Challenges

Home / Hawkes Bay Today

Petition against Maraekakaho quarry gains 1200 signatures

🗋 Save 🇼 Share

ວເບກ

Close to 60 people hospitalised from 2016 Havelock North gastro outbreak, study finds

<u>Thousands of people were infected</u> by drinking water from contaminated bores. Four people died and others were left permanently disabled.

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa - Ngā Ākina o Te Ao Tūroa National **Science** Challenges

Havelock North campylobacter study estimates 8320 were infected

Podcasts & Series Topics Te Ao Māori Pacific

Pacific Te Ao Māori Sport Business Country Local Democracy Reportin

Tom Kitchin, co-host of The Detail

NEW ZEALAND / HEALTH

The number of people infected in the Havelock North campylobacter crisis in 2016 was much higher than previously estimated, new research suggests.

National SCIENCE Challenges

Wayfinding journey

RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

RNC Symposium 2024

Literature review and risk perception landscape

• Affect Heuristic		• Trust theory (Cannon, et al., 2021)	• Communicatio (Lundgren & Mo	
(Loewenstein et al., 2001 • Behaviour a	• Disaste as information theory (Ming-Cl	• Recreancy er-type theory (Freudenbu nou et al., 2008)	urg 1003)	• Fairness hypothesis (Rayner & Canter, 2006)
(Spix et al., 2	• Attention theory (Mrkva et al., 2021)	• Demo (Savage • Gender theory (Gustafsod, 1998) • Socio-cultural theory		
• Availability heuristic	 Prospect theory (Kahneman & Tversky, 2018) 	(Bickerstaff, 2004)	 Place attachn (Kokorsch & Gís 	•
(Tversky & Kahneman, 19 • Knowledge theory (Wahlberg & Dake, 2001)	• Developmental theory (Helm et al., 2018)	 Perceptual dissimilarity (Persons & Fisher, 2022) Cultural cog (Kahan et al, 2) 	gnition theory 2008)	• Anthropological theory (Douglas, 1985)
(Sim	gnitive bias theory on 2000) • Communication theory (Garrick and Gekler, 1991)	• Exposure theory (Brown et al, 2018)	• Indigeno (Roder et a	ous knowledge theory al., 2016)
Cognitivo	Psychometric theory iegrist et al., 2005)	• Cultural (Marris et		• Cultural knowing theory (McMichael et al, 2021) Cultural

RESILIENCE TO NATURE'S CHALLENGES

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

National SCIENCE Challenges

Literature review

• Affective		• Trust theory (Cannon, et al., 2021)	• Communicatio (Lundgren & Mo	-
(Loewenstein et al., 2001) • Behaviour as information (Spix et al., 2023)		• Recreanc er-type theory (Freudenburnou et al., 2008)	urg 1003)	• Fairness hypothesis (Rayner & Canter, 2006)
(Spix et al., 2025)	• Attention theory (Mrkva et al., 2021)	(Savage) • Gender theory (Gustafsod, 1998)	ographic theory e, 1996)) • Place attachr (Anton & Lawre	
 Availability heuristic (Kah (Tversky & Kahneman, 1973) Knowledge theory (Wahlberg & Dake, 2001) 	ospect theory neman & Tversky, 2018) • Developmental theory (Helm et al., 2018)	 Socio-cultural theory (Bickerstaff, 2004) Perceptual dissimilarity (Persons & Fisher, 2022) Cultural co (Kahan et al, 	gnition theory	ment theory ísladóttir, 2023) • Anthropological theory (Douglas, 1985)
 Cognitive bias th (Simon 2000) Rational theory (Star 1969) Psychometric (Siegrist et al., 2) 	Communication theory (Garrick and Gekler, 1991) theory	• Exposure theory (Brown et al, 2018) • Cultura (Marris e	(Roder et a	ous knowledge theory al., 2016) • Cultural knowing theory (McMichael et al, 2021) Cultural

National

Challenges

Concerns

1. Research *on indigenous* communities

2. Disciplinary & interdisciplinary can create barriers to knowing

3. Some key ideas are theoretically ungrounded

4. Scientific vocab used to explain indigenous realities (e.g., indigenous knowledge)

RESILIENCE **TO NATURE'S** CHALLENGES Kia manawaroa SCIENCE – Ngā Ākina o Te Ao Tūroa

What is indigenous knowledge?

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa - Ngā Ākina o Te Ao Tūroa National Challenges Challenges

What is indigenous knowledge?

SCIENCE

Challenges

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Risk perception in the Māori language

- Worldview is encoded in language
- No pre-colonial linguistic analogues
- We did find similarities in meaning

Kia manawaroa

– Ngā Ākina o Te Ao Tūroa

RESILIENCE

CHALLENGES

- Po te rere kore (transl. after you have finished running here, annihilation and destruction)
- Early warning provisions (e.g., kaitiaki, taniwha, wairua)

National

Challenges

• Risk management (e.g., kawa, karakia, mauri stones, Pā, tapu, intertribal marriage)

Risk perception in the Māori language

- Worldview is encoded in language
- No pre-colonial linguistic analogues
- We did find similarities in meaning

- Rangatiratanga
- Po te rere kore (transl. after you have finished running here, annihilation and destruction)
- Early warning provisions (e.g., kaitiaki, taniwha, wairua)
- Risk management (e.g., kawa, karakia, mauri stones, Pā, tapu, intertribal marriage)

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa Kia manawaroa Challenges

Risk perception in the Māori language

- Worldview is encoded in language
- No pre-colonial linguistic analogues
- We did find similarities in meaning

Ngā Kete e Whā + Taonga tuku iho

- Rangatiratanga
- Po te rere kore (transl. after you have finished running here, annihilation and destruction)
- Early warning provisions (e.g., kaitiaki, taniwha, wairua)
- Risk management (e.g., kawa, karakia, mauri stones, Pā, tapu, intertribal marriage)

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa National **Science** Challenges

Rangatira (chiefly behaviour)

- Protection is not about a defensive position. It draws our attention to duties, obligations and responsibilities
- ... it is the sense of responsibility and managing of risk that is at the very centre of Indigenous existence and reality (Hilton, 2021, pg. 25)
- Our risk perception is an expression of duties, obligations and responsibilities

Kia manawaroa

– Ngā Ākina o

Te Ao Tūroa

RESILIENCE

CHALLENGES

• These are things that enhance our mana

National

SCIPNCE

Challenges

... it is the sense of responsibility and managing of risk that is at the very centre of Indigenous existence and reality (Hilton, 2021, pg. 25)

The published literature

- Avoid
- Mitigate
- Relocate the risk
- Accept the risk
- Deliberate risk-taking
- Risk perception is an expression of avoidance aspirations
- Skillfulness in avoiding, mitigating and relocating is what enhances reputation

Kia manawaroa – Ngā Ākina o Te Ao Tūroa National **Science** Challenges

Source: Fekete (2009)

Ngā Kete e Whā (perception)

- There are patterns and levels in our perception of reality (e.g., whakapapa and our worldview)
- Our communities have remarkable perceptual and linguistic complexity
- We tend to draw on others to help build our risk perceptions (collective perceptual intelligence)
- This locates our risk perception experiences in the domains of strong and indigenous transdisciplinarity
- There is a 'perceptual robustness' that is an emergent property of collective perceptual intelligence

Our worldview

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa National **Science** Challenges

Taonga tuku iho (inherited treasures)

- Our cultural values express inclusive logic
- Our Tīpuna used exclusive logic sparingly (e.g., tapu and noa)
- Our risk perceptions are not constrained by categorical logic (classical A and non-A)
- In the published literature we noticed that risk perceptions are *mutually exclusive*
- Our risk perception draws on dual logic

Kia manawaroa

– Ngā Ākina o Te Ao Tūroa

RESILIENCE

CHALLENGES

• Strong and indigenous transdisciplinarity

National

Challenges

National SCieNCE Challenges	Take home messages	
RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa –		
Ngā Ākina o Te Ao Tūroa		

RNC Symposium 2023

Take home messages

Kia manawaroa – Ngā Ākina o

Te Ao Tūroa

- Transdisciplinarity can include coordination of knowledge development across, between and <u>beyond</u> the disciplines
- The domain of strong transdisciplinarity (Western science)

National

Challenges

- The domain of indigenous transdisciplinarity (marae/hapū context)
- The empirical quantification of risk has its place (but predictive power and track record are also important)
- There are valid worldview, epistemological and experiential reasons for paying more attention to the *risk perceptions* of our Māori communities

The end

anthony@tetoiohanga.com

TO NATURE'S CHALLENGES

RESILIENCE

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

National SCIENCE Challenges