Q & A with Prof Tim Sullivan

 



Q. Tēnā koe Tim. Can you tell us how you got into Civil Engineering? Were you always interested in building things?

Kia ora! As a kid I always thought I would become an architect. I loved playing with lego and art and thought that being an architect is sort of like combining the two. However, at a school careers expo day I came across a stand on engineering and saw that all the subjects I was taking at school were well suited to engineering. I had heard very little about engineering and so it was a hard choice between engineering and architecture but in the end, I am glad that engineering won out.    

Q.You completed your PhD at the University of Pavia in Italy. What was your PhD topic?

My PhD topic was “The Seismic Design of Frame-Wall Structures”. I loved this very broad PhD topic that was proposed because my main supervisors (Professors Nigel Priestley and Michele Calvi) had begun questioning the traditional approach engineers use to undertake seismic design. They had identified a number of significant shortcomings with traditional thinking and wanted me to help develop a new approach for structures possessing both frames and walls. Frame-wall structures are very common and yet the interaction between frames and walls (and the floors that connect them) is often not well understood.

Q. You lived in Italy for a long time, and became head of the Design Methods Section of the European Centre for Training and Research in Earthquake Engineering, as well as Assistant Professor at the University of Pavia. How did your time there shape your research interests?

My main research interests are in the fundamentals of seismic design, assessment and retrofit. These research interests were really sparked by the critical thinking of my PhD supervisors and the other academics I met at the ROSE School in Pavia. I was given tremendous opportunities to explore and advance my research ideas in the years that followed and these eventually saw me take an interest in loss-assessment and the seismic performance of non-structural elements (SPONSE). A colleague in Pavia, Prof. Andre Filiatrault, was also very influential in the world of SPONSE and working with him certainly helped spark my research into non-structural elements.

Q. Could you briefly summarise the objectives of the Vertical Infrastructure workstream you’re leading in the Built Environment programme?

Our workstream will seek to identify effective means of reducing the damage and disruption caused by future earthquakes. The research will focus on two main research areas; Quantifying and mitigating the risk (in terms of monetary losses, which can be linked to disruption and downtime) associated with different design solutions and building technologies; Supporting the development of design and assessment standards for NZ buildings to enable enhanced performance objectives to be achieved in practice.

Q. What do you hope will come out of your project that will have real world impact for communities? 

The research findings should help engineers and building owners/developers make better-informed choices during building design and assessment that will lead to a more effective use of our resources.

Q. I understand some of your research relates to cost-effective ways to reduce damage and safety risks in buildings. Can you tell us a bit more about that?

Our seismic design and assessment procedures tend to focus on checking that life-safety criteria are met for earthquake shaking intensities that have a certain return period (e.g. 500 years). However, while two buildings may appear to perform equally well at a 500-year return period intensity level, they may perform very differently in other return periods. Differences in performance can arise due to the characteristics of the structural system used (e.g. base-isolated versus steel braced frame buildings) and the types of connections used for non-structural elements (such as ceilings, cladding elements and plasterboard partition walls). Our research in this area is helping to highlight how various design choices and improvements to certain building components can most effectively reduce a building’s seismic risk.

Q. What do you like to do outside work?

I like to spend time with my wife and two kids. I particularly enjoy taking them biking and  playgrounds (gives me an excuse to be a kid again!) I also really love trout fishing and golf with my dad (who can go round under his age!)

Q. What are your future research aspirations?

I would really like to help develop high-performance housing solutions, both low-rise and medium density that are adopted in practice so that we are much less affected by future earthquake events. I’m also keen to continue developing the seismic design and assessment guidelines that help engineers quantify seismic risk and communicate differences in seismic performance more effectively.  

 

 

Impact case study:

Model and tools for decision-making

 


How did Resilience Challenge research have an impact in 2019-2020?

 

Central to our mission to accelerate natural hazard resilience is the development of new models and tools to quantify hazards and impacts in more realistic ways, providing better assessments of resilience options to decision-makers.

Development of new models is iterative, requiring repeated testing and validation, and their application usually comes at the end of an extensive period of development. RNC is driving meaningful enhancements and innovations in this area, building on work in Phase 1, the Natural Hazards Research Platform, and leveraging existing New Zealand tools such as RiskScape and MERIT.

Updated hazard map for Whakapapa skifield. Credit: GNS Science

Earlier this year, Volcano programme research was integrated into updated hazard posters  for Turoa and Whakapapa skifields, as part of a collaboration with the Department of Conservation. Researchers were also commissioned by Ruapehu Alpine Lifts to produce a technical report on potential lahar hazard in the Whakapapa ski area. A new lahar simulation model, calibrated to previous lahars, was used to estimate the lahar footprint and impact for a range of scenarios. Results of the report have been used to develop safety measures for the new Sky Waka gondola.

 

 

Dr Nicky McDonald and colleagues from ME Research produced economic modelling utilising the MERIT (Measuring the Economics of Resilient Infrastructure Tool) capability developed in Phase 1, to assess the economic consequences of fuel outage scenarios following the Auckland-Marsden Point fuel pipeline failure. MERIT was applied to five disruption scenarios, which were then evaluated with and without mitigation options to better understand the impact of disruption and potential value of mitigation actions for New Zealand. The report was prepared for MBIE and findings also contributed to the Board of Inquiry into the 2017 Auckland Fuel Supply Disruption.

As part of our Coastal Flooding project led by Prof Karin Bryan (University of Waikato) and Dr Scott Stephens (NIWA), Dr Shari Gallop and Masters student Akuhata Bailey-Winiata (Te Arawa, Ngāti Tūwharetoa) carried out a summer project to determine the proximity of coastal marae (located within 2km of the coast) to coastal and river waterbodies. They found that 93% of coastal marae are located in the North Island; over 45% of coastal marae are within 200 meters of the coastline; and approximately 70% of coastal marae are located below 20 meters elevation relative to mean sea level. Data will be used as a baseline for determining risk and vulnerability of coastal marae to coastal hazards and sea-level rise. Akuhata’s research was recognised by the New Zealand Coastal Society who awarded him with a Māori and Pacific Island Research Scholarship in July 2020. 

Our Built Environment programme has completed new hazard maps for Bay of Plenty marae (showing fault lines, flooding, geothermal, liquefaction, and tsunami zones) using data from Rotorua City Council and Environment Bay of Plenty. The maps were provided to Te Arawa Lakes Trust collaborators, and are intended to be used to catalyse conversations with marae regarding adaptation and preparedness planning.

Part of our Weather and Wildfire programme involves the modelling of credible ‘what-if’ scenarios. What if the path of ex-Tropical Cyclone Cook (which did much damage in eastern Bay of Plenty in 2017) had been further west and hit our biggest population centre, Auckland? Weather scenario modelling at such fine-grid resolutions is a first for New Zealand, and allows detailed impact modelling to be carried out for a variety of coincident weather, flood, and landslide hazards, building a credible worse-case impact scenario for Auckland and surrounding districts. The early modelling is highlighting the potential for extreme impacts in Auckland, and in other areas well away from Auckland such as the higher elevations of the Kaimai ranges.

 

New modelling shows what could have happened if ex-TC Cook has tracked over Auckland. Credit: Ian Boutle, 2020

The primary goal of our Earthquake-Tsunami programme is to generate synthetic earthquakes using computer models. Big earthquakes and tsunamis (thankfully) don’t happen very often. A downside of this infrequency is that limited information from past earthquakes makes the job of forecasting future earthquakes and tsunamis challenging. One way of getting over these limitations is to generate synthetic earthquakes over millions of years using computer programs.

The team, led by Dr Bill Fry and Prof Andy Nicol, now has a first iteration of a synthetic seismicity model for New Zealand that incorporates all of the faults used for the National Seismic Hazard Model. This is a successful proof of concept. Further, through extended international collaboration, they have produced basic ground motion predictions from this model. This is an exciting and important stepping-stone in a programme of work that aims to improve future earthquake, tsunami and landslide hazard models in New Zealand.

 

This case study was submitted to the Ministry of Business, Innovation and Employment as part of our 2019-2020 annual reporting. 

 

Impact case study:
Partnership as the pathway to impact

 


How did Resilience Challenge research have an impact in 2019-2020?

 

Interdisciplinary science is an approach well suited to natural hazards research. It is almost never the case that an exclusively engineering, social, or geological research output is the solution to a resilience need. Multiple perspectives and diverse knowledge must be integrated to facilitate change and achieve impact. The coordination necessary for success requires leadership by those willing to work across the boundaries of their discipline or organisation, and agencies that are willing to partner with others with shared aims.

The Alpine Fault earthquake preparedness and planning programme AF8 (with science support from RNC’s Rural programme and co-funding from CDEM and QuakeCore) continues to be a very effective cross-boundary collaboration. It provides an effective direct pathway for RNC to connect multiple strands of resilience research into practical initiatives to build community-level resilience, and facilitate sector planning and preparedness.

This year the AF8 scenarios, including RNC’s network infrastructure disruption work, have been used by agencies including Fire & Emergency New Zealand, Ministry for Social Development and MBIE in their emergency planning for an Alpine Fault earthquake. For MBIE this includes the development of plans for temporary housing following a national-scale emergency, filling what was a critical gap in national emergency planning.

In September, AF8 hosted the inaugural Tourism Forum in Te Anau, attracting over 100 participants including emergency managers and tourism stakeholders. RNC researchers Prof Tom Wilson and Mat Darling presented on the AF8 science scenario, and tourism and disaster risk research. Minister Peeni Henare (Minister of Civil Defence and Associate Minister of Tourism) attended and is very supportive of AF8’s work.

RNC knowledge of infrastructure network vulnerabilities to multiple natural hazards was integrated in the updated  New Zealand Critical Lifelines Infrastructure National Vulnerability Assessment, published in May 2020. Our Built Environment science leader Assoc Prof Liam Wotherspoon is named as a contributor in the report, along with science leaders Dr Rob Bell and Prof Tom Wilson.

 

Orewa, the most exposed community to tsunami in the Auckland region

We’ve also seen partnerships delivering greater resilience at a local level. A team of RNC researchers including Dr Emma Hudson-Doyle, Dr Caroline Orchiston, Dr Julia Becker, Lisa McLaren, and Prof David Johnston worked with Rotary and Auckland Council in Orewa, the most exposed community to tsunami in the Auckland region. The citizen-science initiative sought active participation from schools, families and the wider community. Researchers co-designed a survey to understand perceptions of tsunami risk, how prepared the community were for a tsunami, and what they were likely to do in a tsunami event. They then carried out a tsunami evacuation exercise with two schools to observe how long it took for the students to get to high ground, and the factors affecting evacuation times. The community-led initiative was successful at engaging and motivating the residents of Orewa to improve their knowledge and awareness, so that they will be quicker to react following the next long, strong earthquake.

In another tsunami-prone community, Napier City Council have used RNC research to inform the three phases of their Hill Hosts project. The project aims to raise awareness about tsunami risk, and the need for evacuation to Napier Hill following a long or strong earthquake. Hill residents were encouraged to prepare and plan for evacuees; and the council also identified infrastructure and services improvements that would support evacuation. Napier City Council CE Wayne Jack wrote to the research team acknowledging their contribution to the council’s planning and preparedness process.

2019 research co-authored by Scion social fire scientist Lisa Langer  describes wildfire experiences and actions by predominantly Māori residents during the 2011 Karikari Peninsula wildfire, and preparedness before and after the event. Researchers gathered information through semi-structured interviews and a focus group, and found that experiencing the fire encouraged a majority of residents to become better prepared. Whānau and marae also helped to inform and support residents during and after the wildfire.

The paper provides useful recommendations for improving preparedness for wildfires and encouraging safe fire use in rural communities across New Zealand. The success of this study led to Scion social and kairangahau Māori researchers conducting a study with a hapū in the Hokianga to explore what a resilient hapū would look like and to contribute towards planning with Māori communities to reduce natural hazard risk. The Karikari study also helped shape other Scion-led social fire research on targeted protection against extreme fire. The combined research has helped inform Fire & Emergency New Zealand’s Māori engagement policy and contributed to their work with tangata whenua to build resilience of Māori communities.

 

This case study was submitted to the Ministry of Business, Innovation and Employment as part of our 2019-2020 annual reporting.